首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9656篇
  免费   1234篇
  国内免费   917篇
测绘学   1964篇
大气科学   809篇
地球物理   1764篇
地质学   3217篇
海洋学   1710篇
天文学   19篇
综合类   868篇
自然地理   1456篇
  2024年   24篇
  2023年   85篇
  2022年   205篇
  2021年   325篇
  2020年   363篇
  2019年   341篇
  2018年   290篇
  2017年   466篇
  2016年   439篇
  2015年   452篇
  2014年   619篇
  2013年   705篇
  2012年   601篇
  2011年   665篇
  2010年   543篇
  2009年   579篇
  2008年   649篇
  2007年   679篇
  2006年   615篇
  2005年   483篇
  2004年   420篇
  2003年   325篇
  2002年   340篇
  2001年   288篇
  2000年   223篇
  1999年   220篇
  1998年   171篇
  1997年   139篇
  1996年   95篇
  1995年   95篇
  1994年   82篇
  1993年   74篇
  1992年   49篇
  1991年   29篇
  1990年   29篇
  1989年   24篇
  1988年   23篇
  1987年   14篇
  1986年   7篇
  1985年   10篇
  1984年   12篇
  1983年   4篇
  1982年   3篇
  1981年   1篇
  1977年   1篇
  1971年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
The Kali-Hindon inter-stream region extends over an area of 395 km2 within the Ganga-Yamuna interfluve. It is a fertile tract for sugarcane cultivation. Groundwater is a primary resource for irrigation and industrial purposes. In recent years, over-exploitation has resulted in an adverse impact on the groundwater regime. In this study, an attempt has been made to calculate a water balance for the Kali-Hindon inter-stream region. Various inflows and outflows to and from the aquifer have been calculated. The recharge due to rainfall and other recharge parameters such as horizontal inflow, irrigation return flow and canal seepage were also evaluated. Groundwater withdrawals, evaporation from the water table, discharge from the aquifer to rivers and horizontal subsurface outflows were also estimated. The results show that total recharge into the system is 148.72 million cubic metres (Mcum), whereas the total discharge is 161.06 Mcum, leaving a deficit balance of −12.34 Mcum. Similarly, the groundwater balance was evaluated for the successive four years. The result shows that the groundwater balance is highly sensitive to variation in rainfall followed by draft through pumpage. The depths to water level are shallow in the canal-irrigated northern part of the basin and deeper in the southern part. The pre-monsoon and post-monsoon water levels range from 4.6 to 17.7 m below ground level (bgl) and from 3.5 to 16.5 m bgl respectively. It is concluded that the groundwater may be pumped in the canal-irrigated northern part, while withdrawals may be restricted to the southern portion of the basin, where intense abstraction has led to rapidly falling water table levels.  相似文献   
22.
Improper design, faulty planning, mismanagement and incorrect operation of irrigation schemes are the principle reasons for the deterioration of groundwater quality in a large number of countries, in particular in semi-arid and arid regions. The aim of this study is to determine the dimensions of groundwater quality after surface irrigation was begun in the semi-arid Harran Plain. Physical and chemical parameters of the groundwater including pH, temperature, electrical conductivity (EC), sodium, potassium, calcium, magnesium, chloride, bicarbonate, sulphate, nitrate, nitrite, ammonium, total phosphorus, total organic carbon and turbidity were determined monthly during the 2006 water year. The quality of the groundwater in the study area was assessed hydrochemically in order to determine its suitability for human consumption and agricultural purposes. In the general plain, the EC values measured were considerably above the guide level of 650 μS/cm, while nitrate in particular was found in almost all groundwater samples to be significantly above the maximum admissible concentration of 50 mg/l for the quality of water intended for human consumption as per the international and national standards. Total hardness reveals that a majority of the groundwater samples fall in the very hard water category. Interpretation of analytical data shows that Ca–HCO3 and Ca–SO4 are the dominant hydrochemical facies in the study area.  相似文献   
23.
Controlling of landsides safely and economically is a great challenge to mine operators because landslides are major geological problems especially in open-pit mines. In this paper, a case history at Panluo open-pit mine is presented in detail to share the experiences and lessons with mine operators. Panluo open-pit mine is located in the southwestern Fujian province of China. It is the largest open-pit iron mine in the Fujian province and was planned in 1965 and is in full operation from 1978. In July 1990, an earthquake of magnitude 5.3 in Taiwan Strait and big rainstorms impacted the mine slope, causing tension cracks and rather large-scale failures, and forming a U-shaped landslide. Total potential volume was estimated to be up to 1.0 × 106 m3. This directly threatened the mine production. In order to protect the mine production and the dwellers’ safety around, a dynamic comprehensive method was implemented including geotechnical investigations, in-situ testing and monitoring, stability analysis, and many mitigation and preventive measures. These measures slowed down the development and further occurrence of the landslide. The results showed that the landslides were still active, it was slowed with the control measures and moved rapidly with rainfall and mining down. However, no catastrophic accidents occurred and the pit mining was continued till it was closed at the elevation of 887 m in 2000. As a successful case of landslide control at an open-pit mine for 10 years, this paper reports the controlling measures in details. These experiences of landslide control may be beneficial to other similar mines for landslide control.  相似文献   
24.
Zaragoza city is located in the central Ebro Basin, in the Iberian Peninsula. The fluvial terraces formed by the Ebro River present a valuable resource of sand and gravel deposits. However, taking advantage of these available resources implies conflicts with other land use interests like urban and industrial development as well as agricultural use, which has also traditionally occupied the alluvial terraces. These deposits represent a substantial groundwater resource that should be preserved for future generations. The development of spatial decision support systems (SDSS) has greatly assisted efforts for solving land-use conflicts. These systems combine the benefits of geographic information systems (GIS) and decision support methodologies and are therefore suitable to manage sustainable development of urban areas. In this contribution, an extraction suitability map taking into consideration a variety of environmental criteria is created with the help of a SDSS. The method used is the analytical hierarchy process which is integrated in ArcGIS. Areas most suitable to sand and gravel extraction are located in the high terraces, and in those terraces covered by pediments where the thickness of resource is relatively high. These areas are far from valuable natural areas, outside areas most vulnerable to groundwater contamination, and beneath soils with poor irrigation characteristics.  相似文献   
25.
The control of polluted surface runoff and the assessment of possible impacts on groundwater is a concern at the local and regional scale. On this background, a study investigates possible impacts of organic and inorganic pollutants (including bacteria) originating from a permeable asphalt parking lot on the water quality immediately beneath it. The functioning of the permeable pavement, including clogging and restricted vertical percolation, was also evaluated. Four nested sample ports (shallow and deep) were installed below low- and high-traffic areas, including one port outside the parking lot. At least initially there was a good hydraulic connection between the parking surface and the shallow sample ports. The presence of a geotextile layer at the base of the parking lot structure, however, was identified in lab tests as one factor restricting vertical percolation to the deeper ports. Clogging of the permeable surface was most pronounced in heavy traffic areas and below snow pile storage areas. Corroborated by high electric conductivity and chloride measurements, sand brought in by cars during winter was the principal cause for clogging. No bacteria or BOD were found in percolating water. Polycyclic aromatic hydrocarbons (PAH) were present at concentrations near minimum detection limit. Nutrients (nitrate and phosphate) were being leached into the ground via the permeable parking lot surface at annual flux rates of 0.45–0.84 g/m2/year. A multi-species tracer test demonstrated a retention capacity of the permeable parking lot structure of >90% for metals and 27% for nutrients, respectively.  相似文献   
26.
Groundwater in Sfax City (Tunisia) has been known since the beginning of the century for its deterioration in quality, as a result of wastewater recharge into the aquifer. An average value of 12 × 106 m3 of untreated wastewater reaches the groundwater aquifer each year. This would result not only in a chemical and biological contamination of the groundwater, but also in an increase of the aquifer piezometric level. Quantitative impacts were evaluated by examining the groundwater piezometric level at 57 surface wells and piezometers. The survey showed that, during the last two decades, the groundwater level was ever increasing in the urban area with values reaching 7 m in part; and decreasing in Sidi Abid (agricultural area) with values exceeding −3 m. Groundwater samples for chemical and microbial analysis were collected from 41 wells spread throughout the study area. Results showed significantly elevated levels of sodium, chlorides, nitrates and coliform bacteria all over the urban area. High levels (NO3: 56–254 mg/l; Na >1,500 mg/l; Coliforms >30/100 ml) can be related to more densely populated areas with a higher density of pit latrine and recharge wells. Alternatively results showed a very variable chemical composition of groundwater, e.g. electrical conductivity ranges from 4,040 to19,620 μs/cm and the dry residual varies between 1.4 and 14 g/l with concentrations increasing downstream. Furthermore a softening of groundwater in Set Ezzit (highly populated sector) was observed.  相似文献   
27.
Water resources are a key factor, particularly for the planning of the sustainable regional development of agriculture, as well as for socio-economic development in general. A hydrochemical investigation was conducted in the Friuli Venezia Giulia aquifer systems to identify groundwater evolution, recharge and extent of pollution. Temperature, pH, electric conductivity, total dissolved solids, alkalinity, total hardness, SAR, Ca2+, Na+, K+, Mg2+, Cl, SO4 2−, NO3 , HCO3 , water quality and type, saturation indexes and the environmental stable isotope δ18O were determined in 149 sampling stations. The pattern of geochemical and oxygen stable isotope variations suggests that the sub-surface groundwater (from phreatic and shallow confined aquifers) is being recharged by modern precipitations and local river infiltrations. Four hydrogeological provinces have been recognised and mapped in the Friuli Venezia Giulia Plain having similar geochemical signatures. These provinces have different degrees of vulnerability to contamination. The deep confined groundwater samples are significantly less impacted by surface activities; and it appears that these important water resources have very low recharge rates and would, therefore, be severely impacted by overabstraction.  相似文献   
28.
Neural network prediction of nitrate in groundwater of Harran Plain, Turkey   总被引:2,自引:0,他引:2  
Monitoring groundwater quality by cost-effective techniques is important as the aquifers are vulnerable to contamination from the uncontrolled discharge of sewage, agricultural and industrial activities. Faulty planning and mismanagement of irrigation schemes are the principle reasons of groundwater quality deterioration. This study presents an artificial neural network (ANN) model predicting concentration of nitrate, the most common pollutant in shallow aquifers, in groundwater of Harran Plain. The samples from 24 observation wells were monthly analysed for 1 year. Nitrate was found in almost all groundwater samples to be significantly above the maximum allowable concentration of 50 mg/L, probably due to the excessive use of artificial fertilizers in intensive agricultural activities. Easily measurable parameters such as temperature, electrical conductivity, groundwater level and pH were used as input parameters in the ANN-based nitrate prediction. The best back-propagation (BP) algorithm and neuron numbers were determined for optimization of the model architecture. The Levenberg–Marquardt algorithm was selected as the best of 12 BP algorithms and optimal neuron number was determined as 25. The model tracked the experimental data very closely (R = 0.93). Hence, it is possible to manage groundwater resources in a more cost-effective and easier way with the proposed model application.  相似文献   
29.
This paper provides an overview of the history and current status of landslide susceptibility and hazard mapping for land-use zoning in Australia. It also describes a case study of landslide hazard mapping in a medium density, coastal, suburban residential area of metropolitan Sydney, New South Wales, Australia, with relatively steep terrain. Issues covered include identification and mapping of existing and potential landslides, and susceptibility and hazard zoning for regulatory management and land-use planning. The method involves application of the principles contained within the AGS (2000) guideline, and as updated by the AGS (2007 a,b,c,d,e) suite of guidelines.  相似文献   
30.
Water management and engineering in the karstic High Atlas of Morocco are difficult tasks under the prevailing geological, hydrogeological, geomorphological, vegetational and climatic conditions. It is important to be able to understand and predict the characteristics and availability of water for future water planning in the region under changing climatic and agricultural conditions. An interdisciplinary analysis of problems and adequate hydrological modelling tools developed by geologists, hydrologists and biologists are necessary. The karst areas of the High Atlas Mountains are characterised by impermeable triassic basalt underlying substantial subsurface reservoirs with high potential discharge rates. The karst groundwater aquifers are extensive but largely unknown in dimension, probably with a hierarchical network of groundwater flow paths. It is estimated that approximately 70% of the surface water is directly lost to groundwater. Steep landslide- and debris flow prone slopes exist next to coarse-grained, highly porous river beds. Infrequent, high intensity rainfall or snowmelt causes a particularly high flood risk to these karst areas. In addition, agriculture and land use changes have degraded the karst areas. The most important driving forces for degradation include permanent overgrazing even during droughts and the use of firewood by a continually growing population. Large scale degradation of vegetation has occurred in the oro-mediterranean (mountainous Mediterranean) zone, between 2600 and 3400 m which coincides with the most important zone for karstic groundwater creation. The combination of high amounts of groundwater flow and rapid surface flow due to sparse vegetation has increased the problems of flood flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号